

Alkylaniline Class Study

Scott S. Auerbach, Ph.D., DABT
National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors December 9-10, 2009

Monomethyl substituted

Dimethyl substituted

Monoethyl substituted

Others with HPV status

3,4-dimethylaniline 3,5-dimethylaniline

Alkylanilines - Background

- Ubiquitous potential exposure scenarios
 - · Combustion products
- Exposure has been documented in humans based on the hemoglobin (Hb) adducts
- Hb adduct levels have been associated with bladder cancer in humans
- Carcinogenic in rodents (Liver, Bladder, Subcutaneous tissue, Nasal Cavity)
- Form DNA adducts in vivo (Liver, Bladder and Nasal Cavity)
- DNA adduct formation is a byproduct of metabolic activation

Proposed Studies

- In vitro and In vivo DNA adduct and mutagenesis studies
 - Compare genotoxic potency
- Evaluate select subset of alkylanilines in short-term carcinogenicity bioassay
 - Determine relationship between genotoxic and carcinogenic potency
- Determine contribution of genetic variability to genotoxic potency for those alkylanilines exhibiting high levels of genotoxicity

Proposed Approach

- Perform genotoxicity studies using cultured hepatocytes from multiple inbred strains of mice
 - Comet Assay
 - Quantify DNA Damage
 - DNA adduct formation
 - · Quantify total radioactivity associated with DNA
 - Use genotoxicity endpoints to identify QTL (in silico mapping) that determine differential susceptibility to genotoxic effects of alkylanilines

Key Issues

- Why hepatocytes?
 - · Alkylanilines are carcinogenic in rodent liver
 - · Alkylanilines form DNA adducts in mouse liver
 - Mechanism of carcinogenesis in liver is plausibly related to carcinogenic effect in bladder
 - Formation of unstable conjugated hydroxylamines or quinoneimines
- Which strains of mice?
 - Initial study: Selection will be based on genetic diversity at loci coding for proteins involved in arylamine metabolism
 - Cyp1a2, Nat1, Nat2 and Gstm1
 - If the phenotype exhibits significant variation in initial study:
 - Evaluate 30 to 50 strains and perform HAM

Expected Outcomes

- Quantify the degree to which genetic variation can impact alkylaniline-associated genotoxicity
 - Provide better estimates of interindividual risk
 - Help identify susceptible subpopulations which can be applied to alkylaniline hazard characterization

Current Activities

- Evaluate 14 alkylanilines for genotoxic potency using an AS52 cell assay
 - Hypoxanthine-gaunine phosphoribosyl transferase (HPRT) deficient Chinese Hamster Ovary (CHO) cells that have stably integrated bacterial xanthine-guanine phosphoribosyl transferase (gpt) gene
 - Mutations in gpt confer resistance to 6-thioguanine
 - Can be done in the presence S9 fraction